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The question of the existence of periodic solutions of equation [2]
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is considered by means of Cesari’'s (1] method.

This equation is invariant with respect to the simultaneous inter-
change of z and -z, and t and -t, and hence its solution may supposed
to be odd in t. Equation (1) may be rewritten
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Consider the space S of functions of integrable square on the inter-
val [0. Zw], which are odd and periodic with period 2w, endowed with the
norm
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1
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For x in S, we have
fo ] “1 22 _|/z
z~ Y bysin kt, v (z) == W}J‘ bsz (4)
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Consider, in the space S, the linear operator P and H such that
X
Pz =1bysint+ bysin 2,  Hz = — D kb sin kt (5)
k=1
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If Px = 0, then
oS} . o 1/2

- i
z () ~ E by sin kt, v (Hz) = [? J k"vb,‘.’] <S32v (2) (6)
k=3 k=2

Now consider the operators Q and F

€cos ¢ ) x .
Qr=4—-Ti?zag7r——pmnTir?ag74—4e$na Fz = H (Qz — PQq) (7)

Let x* be a function such that
Pa* = z* — b, sint + b, sin 2¢ (z* € 9) (8)

Then

1

v(z*) =277 (b2 + b)) < ¢ (¢ = const) (9
Consider the subset S*
S§* = [r,z &8, Px = z*, v (2) <d, v(z— 2% <) (d, & = const) (10)

For arbitrary values of the constants d and 8, the subset S* is not
empty, since each x* belongs to S*. The space S is complete, and S* is
closed; consequently, S* is a complete space.

Following [1], let us introduce the operator T
y =Tz == Px 4+ Fz = Pr + H (Qz — PQxr) - (11)
If x is in S*, then
Py = PPz + PFx = z*, y — Py — H(Qz — PQq) (12)
From this, employing (6), we obtain
vy — Py) <37 v (Qz — PQu) (13)

Employing the obvious inequality
v (z — Pz) < v (2), z 68

one obtains readily that

e cos ¢ e cos !
v (Qr — PQz) << v [m“— P(T‘J} cos ¢ Px)] +

+ v [ T‘iis‘sc_:,s_t (¢ — Pz)]—i- [TRY [sin ]jpgzas—t] < [1«" (by, b2, €) —

ASORNCE S RY ) L
_ i .

& — €

o (14)

Here
an
1 st
F (by by, €) = 2;& @2 (1) dt (d) 0 — —(1—% o (z))

0



Periodic solutions of a certain nonlinear equation 1701

where y, and y, are the coefficients of sin ¢t and of sin 2t in the
Fourier expansion of the functiom ®(t).

Now suppose that the coefficients b, and b2 of equation (8) satisfy
the inequalities

Ib, ] < ay, ba| <ay (@4, @, = const) (15)

Then we may put

c=2"" (@2 + a)" (16)
From (14) we obtain that
L (R b
v(Qx—PQz)<maxD[F—— 1 272] +1i_e+p.. 17

where D is the closed rectangle in the bl' b2 space which is defined by
(15).

In order that y belong to S*, it is obviously sufficient that
v({y— Py <9, d=1c+8 (18)

The first of relations (18) will be fulfilled, provided that

g7 fmaxp [ IR e (19)

If (19) holds for a certain 8 = §,, then, upon setting
d=c+8, (20)
we obtain
T ($*) & 8* (1)

Let us prove that, in & certain range of values of the parameters u
and e, the operator T is a contracting operator on S*. Writing y1 < Txl
Yy = sz, with x; and x, in S*, we obtain

yv1— ¥ = H [(Qx, — Qz3) — P (Qx, — Qgz,)]

v — yz) S 37 [(Qry — Quay) — P (Qz; — Q)] <3729 (Qry — Q1)

v (v — 1 o[ _ecost - . ( T — si _”’—]
W —w) < [1+ecosz 71— T B ST ecost o TFecos t)) S
1 1
\<§,—[1 v(xl——xz)“}' v(xl——xg)]<37};i:

Hence, if
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then T is a contracting operator on S*.

Thus, if relations (19) to (22) are fulfilled, then the operator T,
in view of Banach’s contraction mapping theorem [3], has a unique fixed
point y in S*. It may be proved [1], that y is a continuous function of
x*, and, therefore, of the coefficients b, and b,. We have

y Py H(Qy - PQy IRR))

The right-hand side of equation (23) is, almost everywhere, a twice
continuously differentiable function of t, in view of hypothesis H; con-
sequently, the left-hand side also has this property.

Differentiating (23) twice, we obtain

Z—j—zy P (:j—ﬂi)+ Qy — PQy = Q!/+P[‘%— Qy} (24)

The function y(t) is a periodic solution of (2), when P[dzy/dtz -
Qy] = 0 or, which is the same thing, when

U= —by+ By (by, by) — be -~ 0, Voos — 4by + Pa(by, b)) =0 (25)
17 Ty
¢ Cos ¢t . [ y 2 : B 9
R L LU TN ) I tdt + 2 L L tdt - 1,2
P n Si-i—eco.%ty()bmn( +n Si%—ecostsmn (n )

0

Equations (25) may be regarded as equations for the determination of
the coefficients b, and b2. The question of the existence of a periodic
solution of (2) reduces, therefore, to the question of the existence of
solutions b, and b, of equations (25) which also satisfy the inequal-
ities (15). Let us substitute equations (25) by the apprcximate equa-
tions

Uo == — by 4 Bro by, by) — 4e = 0, Vo= — 4db: + ﬂzo (by, by) ~ O (26)
P 2n
= A0 _ecost x iy LK in =W nnrd n=1,2
Bro= 5 \ [orenry ©* W sinnede B\ sin 2 ( )
0 0

Let us map, by means of formulas (26), the domain D of the b;, b,
plane into a domain in the UV plape.

Let o be the boundary of the corresponding domain Ao in the UV
plane. If the origin of coordinates of the UV plane belongs to AO, then
system (26) has a solution satisfying (15). If, in particular, the
following inequality holds:

maxp, V(U — Uyt + (V. — Vg)* < min [c, 0] 27
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where min [co, 0] is the least distance from the origin of coordinates
to a point of the boundary cg» then the domain A, obtained as a result
of the mapping of D by means of formulas (25), also contains the origin
(0, 0), and hence (25) also has a solution which satisfies (15).

Now consider the question of the existence of periodic solutions of
(2) for 0 KX p <1 and ¢ = 0.6. Condition (22) holds for these values of
the parameters., Let us choose @ = 3.5 and ) = 0.5, then inequality
(19) has the form

372 [0.415 + 1.586 4+-p] <O (28)

and is fulfilled for & = 0.056 + 0.134 u. Equation (20) then gives
d = 2.556 + 0.134 y. Let us estimate the quantity appearing on the left-
hand side of (27)

2

. 1 cos ¢ .
IU—‘U0|:|51—610|:|—£S ecist y — Py) sin t dt +
0

2r

P\ oo Y= Py oY+ Py 'zdt|
+nS M s A Fecost Z3( +ecosp

Employing the Cauchy-Buniakovskii inequality for integrals, we obtain

2R 2n

1 vy, (¢ e? sin? ¢ cos?t 1
U—U _(\ — Py dt)/' —-—-—_____dt)/*
| ol EL AW & ¥ <\ (1 + ccos 1)? +
0 0

0 0

Analogousiy, it follows that

27 L3

2N Tl et sin? 2¢ cos?t 2 i sin? 2t ke
V—vel<(2)s d ) _smtar dt)
! ol S (n > [(\ (1 4+ ecos )2 ) T (\ (1 4 ecost)? ] (30)
i\

0

Choosing ¢ = 0.6, and calculating the integrals appearing in (29)
and (30), we obtain

max; V(U — Uyt + (V—V)?<d V6473 n* +-5.299 n + 1.103 (31)

For w = 1, from (31) it follows that

max,, V(U = Ug? + (V — Vg)2 < 0.682 (32)
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Let us map the rectangle |b,| < 3.5, |b,l < 0.5, of the b,, b, plane,
into the UV plane, by means of formulas (26), for i = 1. Then we obtain
the domain (see Figure), bounded by the

curve c, (1), where
(e U

ch (0] N

1 -

min [ (1), 0] > 0.780 @u)

From (32) and (33) it follows that in-
equality (27) holds.

\
[
1
1 If we map the same rectangle into the
N UV plane, again using (26) but with p = 0,
we obtain the domain (see Figure) which
is bounded by the curve o (0).

\ -y

From the Figure it is readily seen that

min [ee (1), 0,] < min [co (0), O] (34)

The quantities UO' V0 are linear functions of U, hence, for 0<Cps1,
the following inequality holds:

min [eg (1), 0] << min [¢, (), 0] (35)

On the other hand, the quantity appearing on the right-hand side of
(31) is an increasing function of p for 0<{ K <1, and thus inequality
(32) is also true for all p in the intervel [0, 1]. From this it follows
easily that (27) holds for e = 0.6 and 0 < p < 1. For these values of
the parameters, system (27) has solutions bl, b2 satisfying (15), and
hence equation (2) has periodic solutions.

The mapping of the boundary of the rectangle into the UV plane was
carried out by means of the computing machine "Strela".
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