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The Question of the existence of periodic solutions of equation [21 

dlz 2e sin t dz 4e sin t 
x2 - 1+ ecostdt+ 1 +:cosrein z = 1 + ecost (O<e<l) (1) 

is considered by means of Cesari’s [d method. 

This equation is invariant with respect to the simultaneous inter- 

change of I and -z, and t and -t, and hence its solution may supposed 

to be odd in t. Equation (1) may be rewritten 

gd- i -S_c~~~s~ z + p sin 1 + Tcosl = 4e sin 1 ( = 2 ,z 1 + e cos t ) (2) 

Consider the space S of functions of integrable sauare on the inter- 

val [O, 2~1, which are odd and periodic with period 2v, endowed with the 

norm 

v (a$ = [$G (I) dl]lif (3) 
0 

For x in S, we have 

2- 2 b, sin kt, v (z) = i;; &I’* (4) 
k=l k-l 

Consider, in the space S, the linear operator P and H such that 

la 

Pz = b, sin t + b, sin 21, Hz = - x ke2 b, sin lit (5) 
h’_=l 

1699 
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If A E 0, then 

cu 

2 (t)- 2 b, siu kt, (6) 
Ii-n k=n 

Now consider the operators Q and F 

Qz._?._!?c- 
1 f e cos t 

z - p sin -L-y--+ 4e sin t, 1 $- e co5 i 
Fz = H(Qs--PQz) (7) 

Let X* be a function such that 

Then 

Px* = x* 7 b, sin t + b, sin 2t (x* ES) (8) 

v (x*) = 2-‘I’ (b,2 + b,2)liz < c (c = const) (9) 

Consider the subset S* 

s*= [Z,2ES,Px=z*, Y(Z) <d, v(x- x*) <‘a! (d, 6 = const~ (W 

For arbitrary values of the constants d and 6, the subset S* is not 

empty, since each X* belongs to S*. The space s is complete, and S* is 

closed; consequently, S* is a complete space. 

Following hl . let us introduce the operator T 

y=Tx==Px+Fx-Px+H(Qx-PQx) 

If x is in S*, then 

Py = PPT + PFx px x*, y-Py-m If(Qx. 

From this, employing (6), we obtain 

v (y - Py) d 3-’ v (Qr - P Qx) 

Employing the obvious inequality 

v (2 - ZJZ) < v (z), 2 E “7 

one obtains readily that 

- PQ4 

(11) 

(12) 

(13) 

v(Qx--PQx)<v 
e cos t 

l+ecostP’-P -j-.qcost ( e cos p.,] __+ 

+V[*Z (z - Pz)] -I- pv [sin j:~&~] < [F (b,, bz, e) - 

Ti2 (b,, b,. e) -I- 7s * (b,, b,, 4 “’ es - 
2 I +,_,+p (14) 

Here 

F (b,, b,, e) = 2; \ @* (t) dt 

iJ 
( Q, 

e cos t 
(1) = (1 .+ e cos t) x* (4 ) 
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where y1 and y2 are the coefficients of sin t and of sin 2t in the 
Fourier expansion of the function a(t). 

Now suppose that the coefficients bl and b, of equation (8) satisfy 
the inequal it ies 

lhl <aa,, IhI <aa (al, a, = const) (15) 

Then we may put 

c = 2-‘/Q (al” + a,“)‘/’ 

From (14) we obtain that 

(16) 

-r12 f 722 ‘1s 
v(Qr-PQz)<maxo 2 1 (17) 

where D is the closed rectangle in the bl, b, space which is defined by 

(15). 

In order that y belong to SO, it is obviously sufficient that 

v(Y----Y) <ad, d==c+-S (18) 

The first of relations (18) will be fulfilled, provided that 

(1% 

If (19) holds for a certain 6 = 6,. then, upon setting 

we obtain 

Let us prove that, 
and e, the operator T 

y2 = TX,, with XI and 

d=c+a, (20) 

T (S*) E S* (21) 

in a certain range of values of the parameters u 
is a contracting operator on S*. Writing y1 = Txl 

x2 in S, we obtain 

yl-yp= HI(Qq- Qq)---P(Qq- Q41 

v (~1 - YA < 3-% [(Qrl - Q4 - P (Qq - Qzz)l Q 39 v (Qq - 44 

Hence, if 

(22) 
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then T is a contracting operator on S*. 

Thus, if relations (19) to (22) are fulfilled, then the operator T, 

in view of Banach’s contraction mapping theorem [31, has a unique fixed 

point y in S*. It may be proved [d, that y is a continuous function of 

x*, and, therefore, of the coefficients h, and bp. We have 

!I PY -1 II (Q!/ - PQy) (23) 

The right-hand side of equation (23) is, almost everywhere, a twice 

continuously differentiable function of t, in view of hypothesis H; con- 

sequently, the left-hand side also has this property. 

Differentiating (23) twice, we obtain 

flY - 
dt2 

P (2) + QY - PQY = 9~ + J’ [3- QY] (24) 

The function y(t) is a periodic solution of (2). when P[d2y/dt2 - 

Qyl F 0 or, which is the same thing, when 

11 =: -- 6, + j31 (h,, 11,) - 4e - 0, L’ : - 46, + (%a (b,, b,) = 0 (35) 

sin ~1 dl (72 1,2) 

Equations (25) may be regarded as equations for the determination of 

the coefficients b, and b2. The question of the existence of a periodic 

solution of (2) reduces, therefore, to the question of the existence of 

solutions bl and b, of equations (25) which also satisfy the inequal- 

ities (15). Let us substitute equations (25) by the approximate equa- 

tions 

?r: 2n 

e cos t z* (t) sin nt dt + _k!- sin 5* (t) sin nt df (n = 1, 2) 
1 +ecost 1 + ecost 

Let us map, by means of formulas (26), the domain D of the b,, b, 

plane into a domain in the l/V plane. 

Let co be the boundary of the corresponding domain A0 in the UV 

plane. If the origin of coordinates of the UV plane belongs to Ao, then 

system (26) has a solution satisfying (15). If, in particular, the 

following inequality holds: 

nlaxo v(CJ - U,)* $- (V - VJ2 <ruin [CO, 01 (27) 
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where min [C,. 01 is the least distance from the origin of coordinates 

to a point of the boundary c,,, then the domain A, obtained as a result 

of the mapping of D by means of formulas (25), also contains the origin 

(0, 6). and hence (25) also has a solution which satisfies (15). 

Now consider the question of the existence of periodic solutions of 

(2) for O<IJ <l and e = 0.6. Condition (22) holds for these values of 

the parameters. Let us choose a1 = 3.5 and a2 = 0.5, then inequality 

(19) has the form 

3-2 IO.415 + 1.58 $p] < 6 (28) 

and is fulfilled for 8 = 0.056 + 0.134 CI. Equation (20) then gives 

d = 2.556 + 0.134 p_ Let us estimate the quantity appearing on the left- 

hand side of (27) 

1 U - U, ( = ] fll - file 1 = 1 f \ $$$; (y - Py) sin t dt + 

il 
273 

+ + 2sin 
5 

Y - PY 
2 (1 + e cos t) 

cos Y + PY 
2 (1 +- e cos 1) 

sin t dt 
I 

0 

Employing the Cauchy-Buniakovskii inequality for integrals, we obtain 

2rr 

$- k (1 (y - Pylz dt)“’ (p (~ ,“;;t t)2 dt)“’ < 

d 0 

dt ‘I* 
) 1 (2% 

Analogously, it follows that 

sin2 2t ‘/I 
dt 

(1 + e cos t)? )I 
(30) 

(1 

Choosing c = 0.6, and calculating the integrals appearing in (29) 

and (39), we obtain 

For p = 1, from (31) it follows that 

mas o d{uxT+ (V - V,)2 < 0.683 (32) 
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Let us map the rectangle lb11 < 3.5, lb,1 < 0.5, of the bl, bp plane, 
into the W plane, by means of formulas (26), for CI = 1. Then we obtain 

the domain (see Figure), bounded by the 

curve c,, (l), where 

0.780 (X, mirl IQ (11, 01 > 

From (32) and (33) it 

equality (27) holds. 
follows that in- 

If we map the same rectangle into the 

cry plane, again using (26) but with ~1 = 0, 

we obtain the domain (see Figure) which 

is bounded by the curve cc (0). 

From the Figure it is readily seen that 

min [CO (I), 0,] < miri [co [O), 0] (34) 

The quantities uO, V0 are linear functions of ~1; hence, for 0 <:cl%l, 

the following inequality holds: 

min [cO (I), 01 < min IQ (p), 01 (35) 

On the other hand, the quantity appearing on the right-hand side of 

(31) is an increasing function of ~1 for 0 < CI <l, and thus inequality 

(32) is also true for all p in the interval LO, 11. From this it follows 

easily that (27) holds for e = 0.6 and 0 < CI < 1. For these values of 

the parameters, system (27) has solutions b,, b, satisfying (15), and 

hence equation (2) has periodic solutions. 

The mapping of the boundary of the rectangle into the UV plane was 

carried out by means of the computing machine “Strela”. 
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