ON PERIODIC SOLUTIONS OF A CERTAIN NONLINEAR EQUATION

(O PERIODICHESKOM RESHENII ODNOGO NELINEINOGO URAVNENIIA)

PMM Vol.27, No.6. 1963, pp.1107-1110
I. D. KILL'
(Moscom)
(Received May 23, 1963)

The question of the existence of periodic solutions of equation [2]

$$
\begin{equation*}
\frac{d^{2} z}{d t^{2}}-\frac{2 e \sin t}{1+e \cos t} \frac{d z}{d t}+\frac{\mu}{1+e \cos t} \sin z=\frac{4 e \sin t}{1+e \cos t} \quad(0 \leqslant e<1) \tag{1}
\end{equation*}
$$

is considered by means of Cesari's [1] method.
This equation is invariant with respect to the simultaneous interchange of z and $-z$, and t and $-t$, and hence its solution may supposed to be odd in t. Equation (1) may be rewritten

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{e \cos t}{1+e \cos t} x+\mu \sin \frac{x}{1+e \cos t}=4 e \sin t \quad\left(z=\frac{x}{1+e \cos t}\right) \tag{2}
\end{equation*}
$$

Consider the space S of functions of integrable square on the interval $[0,2 \pi]$, which are odd and periodic with period 2π, endowed with the norm

$$
\begin{equation*}
v(x)=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{2}(l) d t\right]^{1 / 2} \tag{3}
\end{equation*}
$$

For x in S, we have

$$
\begin{equation*}
x-\sum_{k=1}^{\infty} b_{k} \sin k t, \quad v(x)=\left[\frac{1}{2} \sum_{k=1}^{1} b_{k}^{2}\right]^{1 / 2} \tag{4}
\end{equation*}
$$

Consider, in the space S, the linear operator P and H such that

$$
\begin{equation*}
P x=b_{1} \sin t+b_{2} \sin 2 t, \quad H x=-\sum_{k=1}^{\infty} k^{-2} b_{k} \sin k t \tag{5}
\end{equation*}
$$

If $P_{x} \equiv 0$, then

$$
\begin{equation*}
x(t) \sim \sum_{k=3}^{\infty} b_{k} \sin k t, \quad v(H x)=\left[\frac{1}{2} \sum_{k=0}^{\infty} k^{-4} b_{k}^{2}\right]^{1 / 2} \leqslant 3^{-2} v(x) \tag{6}
\end{equation*}
$$

Now consider the operators Q and F
$Q x=-\frac{e \cos t}{1+e \cos t} x-\mu \sin \frac{x}{1+e \cos t}+4 e \sin t, \quad F x=H(Q x-P Q x)$
Let x^{*} be a function such that

$$
\begin{equation*}
P x^{*}=x^{*}-b_{1} \sin t+b_{2} \sin 2 t \quad\left(x^{*} \in S\right) \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
v\left(x^{*}\right)=2^{-1 / 2}\left(b_{1}^{2}+b_{2}^{2}\right)^{1 / 2} \leqslant c \quad(c=\text { const }) \tag{9}
\end{equation*}
$$

Consider the subset S^{*}

$$
\begin{equation*}
S^{*}=\left[x, x \in S, P x=x^{*}, v(x) \leqslant d, v\left(x-x^{*}\right) \leqslant \delta!\quad(d, \delta=- \text { const })\right. \tag{10}
\end{equation*}
$$

For arbitrary values of the constants d and δ, the subset $S *$ is not empty, since each x^{*} belongs to S^{*}. The space S is complete, and S^{*} is closed; consequently, S^{*} is a complete space.

Following [1], let us introduce the operator T

$$
\begin{equation*}
y=T x=P x+F x=P x+H(Q x-P Q x) \tag{11}
\end{equation*}
$$

If x is in S^{*}, then

$$
\begin{equation*}
P y=P P x+P F x=x^{*}, \quad y-P y \cdots H(Q x-P Q x) \tag{12}
\end{equation*}
$$

From this, employing (6), we obtain

$$
\begin{equation*}
v(y-P y) \leqslant 3^{-2} v(Q x-P Q x) \tag{13}
\end{equation*}
$$

Employing the obvious inequality

$$
v\left(z-P_{z}\right) \leqslant v(z), \quad z \in S
$$

one obtains readily that

$$
\begin{gather*}
v(Q x-P Q x) \leqslant v\left[\frac{e \cos t}{1+e \cos t} P_{x}-P\left(\frac{e \cos t}{1+\cos t} P x\right)\right]+ \\
* v\left[\frac{e \cos t}{1+e \cos t}(x-P x)\right]+\mu v\left[\sin \frac{x}{1+e \cos t}\right] \leqslant\left[F\left(b_{1}, b_{2}, e\right)-\right. \\
\left.-\frac{\gamma_{1}^{2}\left(b_{1}, b_{2}, e\right)+\tau_{2}^{2}\left(b_{1}, b_{2}, e\right)}{2}\right]^{1 / 2}+\frac{e \delta}{1-e}+\mu \tag{14}
\end{gather*}
$$

Here

$$
F\left(b_{1}, b_{2}, e\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi^{2}(t) d t \quad\left(\Phi \quad(t)=\frac{e \cos t}{(1+e \cos t)} x^{*}(t)\right)
$$

where γ_{1} and γ_{2} are the coefficients of $\sin t$ and of sin $2 t$ in the Fourier expansion of the function $\Phi(t)$.

Now suppose that the coefficients b_{1} and b_{2} of equation (8) satisfy the inequalities

$$
\begin{equation*}
\left|b_{1}\right| \leqslant \alpha_{1}, \quad\left|b_{2}\right| \leqslant \alpha_{2} \quad\left(a_{1}, a_{2}=\text { const }\right) \tag{15}
\end{equation*}
$$

Then we may put

$$
\begin{equation*}
c=2^{-1 / 2}\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

From (14) we obtain that

$$
\begin{equation*}
v(Q x-P Q x) \leqslant \max _{D}\left[F-\frac{\tau_{1}^{2}+\gamma_{2}^{2}}{2}\right]^{1 / 2}+\frac{e \delta}{1-e}+\mu \tag{17}
\end{equation*}
$$

where D is the closed rectangle in the b_{1}, b_{2} space which is defined by (15).

In order that y belong to S^{*}, it is obviously sufficient that

$$
\begin{equation*}
v(y-P y) \leqslant \delta, \quad d=c+\delta \tag{18}
\end{equation*}
$$

The first of relations (18) will be fulfilled, provided that

$$
\begin{equation*}
\frac{1}{3^{2}}\left\{\max _{D}\left[F-\frac{\gamma_{1}^{2}+\gamma_{2}^{2}}{2}\right]^{1 / 2}+\frac{e \delta}{1-e}+\mu\right\} \leqslant \delta \tag{19}
\end{equation*}
$$

If (19) holds for a certain $\delta=\delta_{0}$, then, upon setting

$$
\begin{equation*}
d=c+\delta_{0} \tag{20}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
T\left(S^{*}\right) \in S^{*} \tag{21}
\end{equation*}
$$

Let us prove that, in a certain range of values of the parameters μ and e, the operator T is a contracting operator on S^{*}. Writing $y_{1}=T x_{1}$ $y_{2}=T x_{2}$, with x_{1} and x_{2} in S^{*}, we obtain

$$
\begin{gathered}
y_{1}-y_{2}=H\left[\left(Q x_{1}-Q x_{2}\right)-P\left(Q x_{1}-Q x_{2}\right)\right] \\
v\left(y_{1}-y_{2}\right) \leqslant 3^{-2} v\left[\left(Q x_{1}-Q x_{2}\right)-P\left(Q x_{1}-Q x_{2}\right)\right] \leqslant 3^{-2} v\left(Q x_{1}-Q x_{2}\right) \\
v\left(y_{1}-y_{2}\right) \leqslant \frac{1}{3^{2}} v\left[\frac{e \cos t}{1+e \cos t}\left(x_{1}-x_{2}\right)+\mu\left(\sin \frac{x_{1}}{1+e \cos t}-\sin \frac{x_{2}}{1+e \cos t)}\right)\right] \leqslant \\
\leqslant \frac{1}{3^{2}}\left[\frac{e}{1-e} v\left(x_{1}-x_{2}\right)+\frac{\mu}{1-e} v\left(x_{1}-x_{2}\right)\right] \leqslant \frac{1}{3^{2}} \frac{\mu+e}{1-e}
\end{gathered}
$$

Hence, if

$$
\begin{equation*}
\frac{1}{3^{2}} \frac{\mu+e}{1-e}<1 \tag{22}
\end{equation*}
$$

then T is a contracting operator on S^{*}.
Thus, if relations (19) to (22) are fulfilled, then the operator T, in view of Banach's contraction mapping theorem [3], has a unique fixed point y in S^{*}. It may be proved [1], that y is a continuous function of x^{*}, and, therefore, of the coefficients b_{1} and b_{2}. We have

$$
\begin{equation*}
!\quad P_{y}+H(Q!-P Q y) \tag{23}
\end{equation*}
$$

The right-hand side of equation (23) is, almost everywhere, a twice continuously differentiable function of t, in view of hypothesis H; consequently, the left-hand side also has this property.

Differentiating (23) twice, we obtain

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}} \therefore P\left(\frac{d^{2} y}{d t^{2}}\right)+Q y-P Q y=Q y+P\left[\frac{d^{2} y}{d t^{2}}-Q y\right] \tag{24}
\end{equation*}
$$

The function $y(t)$ is a periodic solution of (2), when $p\left[d^{2} y / d t^{2}-\right.$ $Q y] \equiv 0$ or, which is the same thing, when

$$
\begin{gather*}
U=-b_{1}+\beta_{1}\left(b_{1}, b_{2}\right)-4 e \cdots 0, \quad V=-4 b_{2}+\beta_{\mathrm{a}}\left(b_{1}, b_{2}\right)=0 \tag{25}\\
\beta_{n} \frac{1}{\pi} \int_{0}^{2 \pi} \frac{\rho \cos t}{1+e \cos t} y(t) \sin n t d t+\frac{\mu}{\pi} \int_{0}^{2 \pi} \frac{y(t)}{1+e \cos t} \sin n t d t \quad(n-1,2)
\end{gather*}
$$

Equations (25) may be regarded as equations for the determination of the coefficients b_{1} and b_{2}. The question of the existence of a periodic solution of (2) reduces, therefore, to the question of the existence of solutions b_{1} and b_{2} of equations (25) which also satisfy the inequalities (15). Let us substitute equations (25) by the approximate equations

$$
\begin{aligned}
& L_{0}=-b_{1}+\beta_{10}\left(\ell_{1}, b_{2}\right)-4 e=0, \quad V_{0}=-4 b_{2}+\beta_{20}\left(b_{1}, b_{2}\right)=0 \\
& \beta_{n 0}= \frac{1}{\pi} \int_{0}^{2 \pi} \frac{e \cos t}{1+e \cos t} x^{*}(t) \sin n t d t+\frac{\mu}{\pi} \int_{0}^{2 \pi} \sin \frac{x^{*}(t)}{1+e \cos t} \sin n t d t \quad(n-1,2)
\end{aligned}
$$

Let us map, by means of formulas (26), the domain D of the b_{1}, b_{2} plane into a domain in the l / V plane.

Let c_{0} be the boundary of the corresponding domain Δ_{0} in the $U V$ plane. If the origin of coordinates of the $U V$ plane belongs to Δ_{0}, then system (26) has a solution satisfying (15). If, in particular, the following inequality holds:

$$
\begin{equation*}
\max _{D} \sqrt{\left(U-U_{0}\right)^{2}+\left(V-V_{0}\right)^{2}}<\min \left[c_{0}, 0\right] \tag{27}
\end{equation*}
$$

where min $\left[c_{0}, 0\right]$ is the least distance from the origin of coordinates to a point of the boundary c_{0}, then the domain Δ, obtained as a result of the mapping of D by means of formulas (25), also contains the origin $(0,0)$, and heace (25) also has a solution which satisfies (15).

Now consider the question of the existence of periodic solutions of (2) for $0 \leqslant \mu \leqslant 1$ and $e=0.6$. Condition (22) holds for these values of the parameters. Let us choose $\alpha_{1}=3.5$ and $\alpha_{2}=0.5$, then inequality (19) has the form

$$
\begin{equation*}
3^{-2}[0.415+1.5 \delta+\mu] \leqslant \delta \tag{28}
\end{equation*}
$$

and is fulfilled for $\delta=0.056+0.134 \mu$. Equation (20) then gives $d=2.556+0.134 \mu$. Let us estimate the quantity appearing on the lefthand side of (27)

$$
\begin{aligned}
&\left|U-U_{0}\right|=\left|\beta_{1}-\beta_{10}\right|=\left\lvert\, \frac{1}{\pi} \int_{0}^{2 \pi} \frac{e \cos t}{1+\cos t}(y-P y) \sin t d t+\right. \\
& \left.+\frac{\mu}{\pi} \int_{0}^{2 \pi} 2 \sin \frac{y-P y}{2(1+e \cos t)} \cos \frac{y+P y}{2(1+e \cos t)} \sin t d t \right\rvert\,
\end{aligned}
$$

Employing the Cauchy-Buniakovskii inequality for integrals, we obtain

$$
\begin{align*}
& \left|U-U_{0}\right| \leqslant \frac{1}{\pi}\left(\int_{0}^{2 \pi}\left(y-P y^{2}\right) d t\right)^{1 / 2}\left(\int_{0}^{2 \pi} \frac{e^{2} \sin ^{2} t \cos ^{2} t}{(1+e \cos t)^{2}} d t\right)^{1 / 2}+ \\
& \quad+\frac{\mu}{\pi}\left(\int_{0}^{2 \pi}(y-P y)^{2} d t\right)^{1 / 2}\left(\int_{0}^{2 \pi} \frac{\sin ^{2} t}{(1+e \cos t)^{2}} d t\right)^{1 / 2} \leqslant \\
& \leqslant\left(\frac{2}{\pi}\right)^{1 / 2} \delta\left[\left(\int_{1}^{2 \pi} \frac{e^{2} \sin ^{2} t \cos ^{2} t}{(1+e \cos t)^{2}} d t\right)^{1 / 2}+\mu\left(\int_{0}^{2 \pi} \frac{\sin ^{2} t}{(1+e \cos t)^{2}} d t\right)^{1 / 2}\right] \tag{29}
\end{align*}
$$

Analogously, it follows that

$$
\begin{equation*}
\left|V-V_{0}\right| \leqslant\left(\frac{2}{\pi}\right)^{1 / 2} \delta\left[\left(\int_{i}^{2 \pi} \frac{e^{2} \sin ^{2} 2 t \cos ^{2} t}{(1+e \cos t)^{2}} d t\right)^{1 / 2}+\mu\left(\int_{i}^{3} \frac{\sin ^{2} 2 t}{(1+e \cos t)^{2}} d t\right)^{1 / 2}\right] \tag{30}
\end{equation*}
$$

Choosing $c=0.6$, and calculating the integrals appearing in (29) and (30), we obtain

$$
\begin{equation*}
\max , \sqrt{\left(U-\overline{\left.U_{0}\right)^{2}+\left(V-V_{0}\right)^{2}} \leqslant \delta \sqrt{6.473 \mu^{2}+5.299 \mu+1.103}\right.} \tag{31}
\end{equation*}
$$

For $\mu=1$, from (31) it follows that

$$
\begin{equation*}
\max _{D} \sqrt{\left(U-U_{\mathrm{e}}\right)^{2}+\left(V-V_{0}\right)^{2}}<0.682 \tag{32}
\end{equation*}
$$

Let us map the rectangle $\left|b_{1}\right| \leqslant 3.5,\left|b_{2}\right| \leqslant 0.5$, of the b_{1}, b_{2} plane, into the $U V$ plane, by means of formulas (26), for $\mu=1$. Then we obtain the domain (see Figure), bounded by the curve c_{n} (1), where

$$
\begin{equation*}
\min \left[c_{0}(1), 0\right]>0.780 \tag{3i}
\end{equation*}
$$

From (32) and (33) it follows that inequality (27) holds.

If we map the same rectangle into the UV plane, again using (26) but with $\mu=0$, we obtain the domain (see Figure) which is bounded by the curve $c_{0}(0)$.

From the Figure it is readily seen that

$$
\begin{equation*}
\min \left[c_{0}(1), 0,\right]<\min \left[c_{0}(0), 0\right] \tag{34}
\end{equation*}
$$

The quantities U_{0}, V_{0} are linear functions of μ; hence, for $0 \leqslant \mu \leqslant 1$, the following inequality holds:

$$
\begin{equation*}
\min \left[c_{0}(1), 0\right] \leqslant \min \left[c_{0}(\mu), 0\right] \tag{35}
\end{equation*}
$$

On the other hand, the quantity appearing on the right-hand side of (31) is an increasing function of μ for $0 \leqslant \mu \leqslant 1$, and thus inequality (32) is also true for all μ in the interval [0, 1]. From this it follows easily that (27) holds for $e=0.6$ and $0 \leqslant \mu \leqslant 1$. For these values of the parameters, system (27) has solutions b_{1}, b_{2} satisfying (15), and hence equation (2) has periodic solutions.

The mapping of the boundary of the rectangle into the $U V$ plane was carried out by means of the computing machine "Strelan.

BIBL IOGRAPHY

1. Cesari, L., Periodic solutions of differential systems. Proc. Symposium on Active Networks and Feedback Systems. New York, 1960; Brooklyn, N.Y., 1961.
2. Beletskii, V.V., O libratsii sputnika (On librations of satellites). Iskusstvennye sputniki Zemli, No. 3, 1959.
3. Kantorovich, L.V. and Akilov, G.P., Funktsional'nyi analiz v normirovannykh prostranstvakh (Functional Analysis in Vormed Spaces). Fizmatgiz, 1959.
